Kapitza-Dirac Talbot-Lau Interferometry (KDTLI)

The KDTLI interferometer has been designed to combine the benefits of near-field matter-wave interferometry in a Talbot Lau design with the advantages of coherent molecule manipulation by optical phase gratings. 

It consists of three consecutive gratings mounted in the matter-wave near field. This makes it well suited for studying de Broglie wavelengths as tiny as 300 fm. KDTLI accepts spatially incoherent particle beams, which eliminates the need of collimators and thus increases the transmitted particle flux by several orders of magnitude over far-field experiments. Given the generally low brightness of macromolecular beam sources and the low efficiency of the detectors for biomolecules, this is an essential feature.

In contrast to the earlier Talbot-Lau interferometer, the central grating of a KDTLI is an optical grating. THis avoids the dispersive van-der-Waals interaction between the grating walls and the molecules that has also been systematically studied in our far-field experiments. The KDTLI can therefore be operated with a broad velocity distribution of a thermal source.

KDTLI is currently holding the world record for the most massive particle in matter wave-wave interferometry. We were able to prove the quantum wave nature and delocalization of molecules composed of more than 800 atoms and more than 10.000 amu.

KDTLI has also proven to be a powerful tool for quantum-assisted spectroscopy and deflectometry to measure static and dynamic properties on molecules delocalized in a clean UHV environment. 


  • S. Eibenberger, X. Cheng, J.P. Cotter, M. Arndt,
    Absolute absorption cross sections from photon recoil in a matter-wave interferometer,
    Phys. Rev. Lett. 112,  250402 (2014).
  • M. Arndt, K. Hornberger,
    Insight review: Testing the limits of quantum mechanical superpositions,
    Nature Physics 10,  271-277 (2014).
  • M. Arndt,
    De Broglie’s meter stick: Making measurements with matter waves,
    Phys. Today 67,  30-36 (2014).
  • S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor, J. Tüxen,
    Matter-wave interference of particles selected from a molecular library with masses exceeding 10 000 amu,
    Phys. Chem. Chem. Phys. 15,  14696 - 14700 (2013).
  • K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, M. Arndt,
    Colloquium: Quantum interference of clusters and molecules,
    Rev. Mod. Phys. 84,  157-173 (2012).
  • J. Tüxen, S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor,
    Highly Fluorous Porphyrins as Model Compounds for Molecule Interferometry,
    Eur. J. Org. Chem.  4823-4833 (2011).
  • S. Gerlich, S. Eibenberger, M. Tomandl, S. Nimmrichter, K. Hornberger, P. Fagan, J. Tüxen, M. Mayor, M. Arndt,
    Quantum interference of large organic molecules,
    Nature Communs 2,  263 (2011).
  • S. Eibenberger, S. Gerlich, M. Arndt, J. Tüxen, M. Mayor,
    Electric moments in molecule interferometry,
    New J. Phys. 13,  043033 (2011).
  • J. Tüxen, S. Gerlich, S. Eibenberger, M. Arndt, M. Mayor,
    Quantum interference distinguishes between constitutional isomers,
    Chem. Commun. 46,  4145-4147 (2010).
  • M. Gring, S. Gerlich, S. Eibenberger, S. Nimmrichter, T. Berrada, M. Arndt, H. Ulbricht, K. Hornberger, M. Müri, M. Mayor, M. Böckmann, N.L. Doltsinis,
    Influence of conformational molecular dynamics on matter wave interferometry,
    Phys. Rev. A 81,  031604(R) (2010).
  • K. Hornberger, S. Gerlich, H. Ulbricht, L. Hackerm\"uller, S. Nimmrichter, I. Goldt, O. Boltalina, M. Arndt,
    Theory and experimental verification of Kapitza-Dirac-Talbot-Lau interferometry,
    New J. Phys. 11,  043032 (2009).
  • S. Gerlich, M. Gring, H. Ulbricht, K. Hornberger, J. Tuxen, M. Mayor, M. Arndt,
    Matter-wave metrology as a complementary tool for mass spectrometry,
    Angew. Chem. Int. Ed. Engl. 47,  6195-6198 (2008).
  • S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, M. Arndt,
    A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,
    Nature Physics 3,  711-715 (2007).
  • B. Brezger, M. Arndt, A. Zeilinger
    Concepts for near-field interferometers with large molecules
    J. Opt. B: Quantum Semiclass. Opt. 5, S82-S89 (2003)