We are fascinated by & working on ...

  • Universal matter-wave interferometry & the foundations of physics
    • Demonstrated quantum interference of atoms & molecules:
      C60 FullerenesCs, Sr, PAHs, vitamins,  macromolecules > 25 kDa, clusters of molecules, polypeptides, etc.
    • Exploring new materials, complexity classes & internal dynamics in quantum interferometry:  
      proteins, metal clusters, dielectric nanoparticles, etc.
    • Quantitative experiments on inertial dephasing as well as collisional and thermal decoherence.
  • Cooling and quantum optomechanics 
    • Optical cooling to rotational quantum states.
    • Trapping & cooling of nanobiological matter
  • Enabling technologies for quantum experiments
    • Sources of cold metallic, dielectric and biological nanomaterials.
    • Coherent wave-front division technologies
  • Quantum sensing
    • Matter-wave assisted: force measurements with < 10-26 N sensitivity.
    • Trapped nanorotors: torque & rotation sensing on the micron scale.  
    • Superconducting nanowires: mass spectrometry & molecule analysis.

 Latest News

23.08.2022
 

Our new intern Alice Judt will be working on the ELUQUINT project for the next 2 months.

23.08.2022
 

Published: Exploring metal nanoparticles for matter-wave interferometry

22.08.2022
 

Animated: Working principle of superconducting nanowires as detectors for massive particles!

10.08.2022
 

Animated: Manufacturing of a superconducting nanowire detector

26.07.2022
 

Cryo-CMOS for Quantum Computing: from a Wild Idea to Working Silicon

04.07.2022
 

Revealing new facets in experimental quantum information processing with photons